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Abstract

The stability of flames is of great importance to the practices of com-
bustion devises. Triple flames are an important feature seen in par-
tially premixed systems which are used for many low emission com-
bustors. Buoyancy can play a key role in many laminar flames, such
as nonpremixed jet flames. An inviscid analysis of triple flames under
the influence of gravity is performed to identify the most amplified
frequency in a spatially developing flow. Favorable comparisons are
found between the theoretical results and those observed in numerical
simulations.

1 Introduction

Since the work of Phillips (1965) [1] more than three decades ago, there
has been a growing interest in the study of triple flames (Buckmaster and
Matalon [2|, Hartley and Dold [3], Chung and Lee [4], Kioni et al. [5], Lee
et al [6], Lee and Chung [7], Ruetsch et al [8], Ruetsch and Ferziger [9],



Domingo and Vervisch [10], Plessing et al [11], Daou and Linan [12], Echekki
and Chen [13], Ghosal and Vervisch [14]). The interest is largely motivated by
the potential role these structures play in the burning of partially-premixed

mixtures, especially for the stabilization and ignition in diffusion flames (e.g.,
Phillips 1965 [1], Chung and Lee [4], Im and Chen [16],Chen and Bilger [15]).

Prediction of the characteristics of chemically reacting mixing layers is very
important for a number of technologies. For the purpose of mixing enhance-
ment, we prefer to have turbulent flows, which occur only if the laminar
flows become unstable. Therefore, it is important to analyze the stability of
reacting flows. Linear stability analysis is the most convenient tool for this
purpose. The stability of nonreacting mixing layers has been extensively in-
vestigated. In most of previous work, analytic mean velocity profiles(usually
hyperbolic tangent or error functions) were used. The validity of doing so
has been investigated by Shin and Ferziger [17].

For incompressible parallel inviscid flows, Rayleigh [18] showed that, if the
velocity profile has an inflection point, the flow may be unstable. Lin [19]
suggested that the inviscid mechanism dominates at large Reynolds numbers
with viscosity producing only slight damping. Michalke [20] numerically in-
tegrated the Rayleigh stability equation with the hyperbolic-tangent velocity
profile for temporally as well as spatially growing disturbances to incompress-
ible flow; the spatial case results agreed well with experiments. The effects
of the mean velocity profile were studied by Monkewitz and Huerre [21],
who found that the amplification rate found with the Blasius mixing layer
velocity profile agreed well with experimental results. Morkovin [22] sug-
gested that only stability analyses based on mean profiles derived from the
boundary-layer equations should be compared with experimental results; this
is consistent with Michalke’s proposition. Koochesfahani and Frieler [23] in-
vestigated the linear spatial stability of plane mixing layers with both uni-
form and non-uniform density; they used analytical profiles. Kimura [24]
constructed a stability theory for axisymmetric parallel flows and showed
that the oscillation of laminar-jet flames can be explained by linear stability
analysis. Trouve and Candel |25] performed a linear stability analysis of the
inlet jet in a ramjet dump combustor using hyperbolic-tangent velocity and
temperature profiles. They found that the density variation has a significant
effect in the instability. Jackson and Grosch [26] studied the effect of heat



release in the spatial stability of a supersonic reacting mixing layer using
the hyperbolic-tangent velocity profile and the flame sheet approximation.
Recently, Mahalongam et al [27], studied the effects of heat release on the
stability of coflowing, chemically reacting jets. They suggested that the heat
release due to chemical reaction stabilizes the flow.

For compressible flows, Groppengiesser |28] used laminar solutions of the
compressible boundary-layer equations as the base flow and found a second
mode of instability at high Mach number, which was subsequently rediscov-
ered by Blumen et al [29]. Sandham and Reynolds [30] solved the linearized
inviscid compressible stability equation and found maximum amplification
at the frequency at which vortices are found in the laboratory. They also
found that three-dimensional effects are important at high Mach number.
Buckmaster and Peter [31] performed an inviscid linear instability analysis
for a candle flame. The results are comparable with experimental results.

In this report, we consider a low-speed, two-dimensional triple flame in which
fuel and oxidizer are partially mixed at the inlet. First, the governing equa-
tions and the linear stability formulation are given and reduced for two-
dimensional flows. Second, detailed discussions of the linear stability analysis
are presented including the boundary conditions, the characteristics of eigen-
function for symmetric flows, and the numerical solution techniques. Third,
the numerical tools developed here are validated against previously published
results. Then, numerical calculations of instability equations were conducted
for analytically specified profiles as well as for those fit to numerical results.
The predicted frequency of the most amplified mode is then compared to
that observed in numerical simulations of triple flames. Finally, a summary
of the results is presented.

2 Inviscid Stability Eigenfunction Equations

The general formulation developed below can be applied to premixed, non-
premixed, and triple flames in two-dimensional planar shear layers. It is
assumed that the flow is parallel with its predominant flow direction parallel
to the x-axis. The parallel low assumption implies that the predominant
variation of the mean flow properties varies in the direction normal to the



flow. In the linear stability analysis to be described below, all flow variables,
such as density p, velocities v and v, pressure p, and temperature 7', are
assumed to be the sum of the mean and disturbance components and can be
represented by the form:

flx,y,t) = fly) + f(z,9,1), (1)

where f(z,y,t) is a generic flow variable that is a function of position and
time. The over-bars and primes denote the mean and disturbance compo-
nents, respectively. Because the parallel flow assumption is invoked, f is
assumed to vary only with the cross-stream co-ordinate y.

It is further presumed that any general disturbance represented by the primed
variables can be constructed by the form of traveling wave disturbances:

f'(@,y,t) = f(y)expli(ax — Bt)], (2)

where the quantity f (y) is the eigenfunction assumed to be a function of
y only, « is the complex streamwise wave number, 3 is the given temporal
frequency, and i is defined by 7 = \/—1. For the temporal stability analysis,
« is real and S is complex, whereas for the spatial stability analysis, « is
complex and ( is real. The amplification rates for the two cases are (5; and
—q, respectively.

Starting from the governing equations for continuity, momentum, and energy,
and the ideal gas state equation of a heat-conducting viscous fluid under the
action of gravity, we simplify these equations for two-dimensional, inviscid,
low Mach number, and parallel flows and obtain the non-dimensional equa-
tions. The disturbance equations are derived by substituting Eq.(1) into the
non-dimensional equations and then neglecting the products of disturbances
to linearize them. The eigenfunction equations are derived by substituting
Eq.(2) into the linearized disturbance equations.

2.1 Governing Equations

The equations of motion of a heat-conducting viscous fluid under the action
of gravity can be found in textbooks. In the notation of Cartesian tensors
with position vector z; and velocity u; (j = 1,2, 3), the exact equations are
as follows.



The equation of continuity is
Op , 0lpuj)
ot 8.Tj
where p is the density of the fluid.

=0, (3)

The equations of motion, or of momentum, are the Navier-Stokes equations,

DUZ' 80'1"
= —qpbia + I 4
where D% = % + U/j%, the x3-axis is the upward vertical, and the stress

tensor is given by

— S )+ Ay,
83)j + 81’, 38$k ]> 83)k J

where p is the pressure, y is the coefficient of dynamic viscosity of the fluid,
and A is the bulk viscosity, or second viscosity.

ij = —Poij + (

The equation of energy, or of heat conduction, is
De 0 oT ou,;
— = —k=— | —p=—24+® - Qpwp, 5
th ax]- < 89@) paﬂij QF F ( )
where e is the internal energy per unit mass of the fluid, £ is the thermal
conductivity, T is the temperature, Qr is the heat of reaction per unit mass

of fuel burned, wr is the chemical reaction rate of fuel, and the rate of viscous
dissipation per unit volume of fluid is given by

1 [Ou; Ou; 2 2 Ouy, 2
oo ) (- 20 (3
For a calorically perfect gas e = ¢, T, where ¢, is the specific heat at constant
volume and 7T is the absolute temperature.

The ideal gas state equation is

p = pRT, (6)
where p is the absolute pressure, p is the density, 7" is the absolute tempera-
ture, and R = R, /M is the specific gas constant which is a different value for

different gases. R, is the universal gas constant, i.e., the same for all gases,
and M is the molecular weight of the gas.



2.2 Simplified Equations

For two-dimensional inviscid flows without the action of gravity, we have the
following properties: w(z,y,t) =0, p =0, A =0, and g = 0. Neglect of both
viscosity and buoyancy has been used by Buckmaster and Peters [31] and they
concluded that both of these terms are of the same order. For consistency,
both viscosity and buoyancy should be excluded from the inviscid analysis.
Inviscid results also justify the approximation that the effects corresponding
to the chemical reaction rate are small, except for their influence on the
mean flow via density change. This approximation has been justified by
Mahalongam et al |27]. Therefore, we can simplify the above governing
equations as following:

op Opu Opv

ot o Ty " .
(Eeged)-
(o n) <o "
B = o (4, P w

p = pRT. (11)

Let us now obtain a form of the energy equation in terms of enthalpy A only.
By definition of enthalpy,

h=e+pv=e+ ]3,

p

which suggests that

De Dh  Dp pDp

_ Dh _Dp , 12
Pt =PDt "Dt T oDt (12)

From the equation of continuity, Eq.(7), we have

Dp _ 8“9
Dt 836 j



Substituting Eq.(13) into (12) and then into the energy equation, Eq.(10),
we have

DT _ Dh_ 9 (0T\ Dp 9 (or
pcht_th_axj &L'j DtNaSE] 8xj ’

DT 0 or
"Dt ~ Ba, <k('3—xj> ; (14)

where the enthalpy h = ¢,T for the thermally perfect gas, ¢, is the specific
heat at constant pressure, 7" is the absolute temperature, and p = constant
for parallel flows. Therefore, Eqs.(7), (8), (9), (14), and (11) consist of the
equations for continuity, momentum, and energy, and the ideal gas state
equation for two-dimensional, inviscid, low Mach number, and parallel flows.

that is,

2.3 Dimensionless Equations

It is convenient, as usual, to write the governing equations in terms of di-
mensionless quantities, and for this purpose we introduce the characteristic
length L, velocity V', density pg, and temperature 7 of the fluid. Their
choices are, of course, problem dependent. If we now let

t.=tV/L,x, =z/L,y. =y/L,u, = u/V,

v =v/V,pe = p/(0V?), px = p/po, T = T/Ty, (15)

and substitute the transformation, Eq.(15), into the governing equations,
Eqgs.(7), (8), (9), (14), and (11). Denoting dimensionless quantities as the
notations without the subscript *, we obtain the dimensionless equations for
continuity, momentum, and energy, and the equation of state as

dp Opu  Opv

o or Ty = (16)
ou ou ou op
_ N JE— = —— 1
p(at+“ax+”ay> oz’ (17)
ov ov ov\  Op
P(a*“%*“%) =~y (18)



or or or 1 o0 (0T
p(—-i—u——i—v—) ( ) , (19)

ot ox oy - RePr% 8—36]
RT;
p =0T =R, (20)

where Pr = c,p/k, Prandtl number which is a finite value, is an intrinsic
property of the fluid, not of the flow, whereas Re = LV py/u, Reynolds
number which is infinity for inviscid flows, and R' = RT,/V? is a constant.
Hence, the non-dimensional energy equation, Eq.(19), becomes

or or  orT
,0<E+u£+va—y> = 0. (21)

Therefore, Eqgs.(16), (17), (18), (21), and (20) consist of the dimensionless
equations for continuity, momentum, and energy, and the ideal gas state
equation for two-dimensional, inviscid, low Mach number, and parallel flows.

2.4 Linearized Disturbance Equations

Substituting Eq.(1) into the above five dimensionless equations with the as-
sumption that v(y) = 0,a(y) = U(y), p(z,y,t) = constant, and p(y) =
constant, we obtain the linearized disturbance equations as follows.

Continuity:
0p+7) , Np+p)a+u) oG+l _

ot ox dy
Hence,

%’ZI—F/O??—Z—G-U??—ZI—FU'Z—Z—F,O?)—Z:O (22)
Momentum: x component:
(8(@ a—z u') (@) a(aaz u') N U,a(a(;y- u') e ((93_1;’ ) (5+s) = — 8(;56; ')
Hence, / / /

p%—l; + pU%—Z + pv'aa—[y] = —g—i (23)



Momentum: y component:

(aa—i + (@ + u')g—i + v'g—z’) (p+0)= —a(ﬁszl)
Hence, , , /
p%+pU%:_%' (24)
Energy:
(p+ ) (LT; ) + (@ +u) a(TaZ ) + v'a(TaZ TI)) =0.
Hence, _
ﬁaa—? + ﬁU%—Z + ﬁv'aa—z =0. (25)

Equation of State:
p=R(p+p)T+T)=RpT+ R (pT" +Tp')+ Rp'T,

where p ~ constant. Keeping the first-order terms and ignoring the other
terms, the ideal gas state linearized disturbance equation becomes

pT" +Tp = 0. (26)

2.5 Eigenfunction Equations

By substituting Eq.(2) into the above five linearized disturbance equations,
Eqgs.(22), (23), (24), (25), and (26), we obtain the eigenfunction equations for
continuity, z and ¥ momentum, energy, and equation of state in the following,
respectively:

ip(aU — B) + 0p' + p(v' + i) = 0, (27)
—1Bpt + poU' + pUiat = —iap, (28)
—iBpt + pUiad = —p, (29)

i(aU — B)pT + pT's = 0, (30)

oT +Tp=0, (31)



where the prime ' denotes %. The quantities U, p, and T, all of them func-
tions of y, represent the non-dimensional mean streamwise velocity, density,
and temperature, respectively. The quantities p, u, v, p, and T, denote the
non-dimensional density, x and y velocity components, pressure, and temper-
ature eigenfunctions, respectively. Note that all of the quantities, including
y, are dimensionless. The quantities o and [ are the complex streamwise
wave number and the temporal frequency, respectively.

3 Pressure and ¢ Eigenfunction Equations and
Boundary Conditions

From the above non-dimensional linearized eigenfunctions, we can obtain
the eigenfunction equation of pressure and then the corresponding boundary
conditions. Next, we transform the pressure eigenfunction equation into
another eigenfunction ®. Finally, the infinite physical domain is transformed
to a finite computational domain. Both transformations make it easy for us
to solve the eigenvalue problems by numerical methods.

3.1 Pressure Eigenfunction Equation and Boundary Con-
ditions

From the above five eigenfunction equations, we can obtain the pressure
eigenfunction equation. First, from the continuity and momentum eigenfunc-
tion equations, that is, Eqs.(27), (28), and (29), we can eliminate the z and
y velocity components to obtain an eigenfunction equation for the pressure
and the density only. From Eq.(29), we obtain the eigenfunction equation
for the y velocity component as expressed by the pressure eigenfunction:

=~/

p

V= ———. 32
pi(alU — B) (82)
Differentiating Eq.(32) with respective to y, we have
. . A . T 71
o pilal = B)if' — FIYilal - §) + pil"a] )

p*(alU — B)?

Then, we substitute Eq.(32) into (28) to eliminate the y velocity component
eigenfunction and thus obtain the eigenfunction equation for the z velocity
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component as expressed by the pressure eigenfunction:
ap(aU — B) +U'p

 plaU - p)?

Next, we substitute Eqgs.(32), (33), and (34) into (27) to eliminate the z and y

velocity component eigenfunctions and we obtain an eigenfunction equation
for the pressure and the density only:

L, 22U’
aU —pf

(34)

U=

P+ plalU — B)? —a?p = 0. (35)

Second, the density eigenfunction in Eq.(35) can be eliminated by using the
energy and the ideal gas state eigenfunction equations, Eqgs.(30) and (31) re-
spectively. Substituting Eq.(32) into (30) to eliminate the y velocity compo-
nent eigenfunction, we obtain the eigenfunction equation for the temperature
as expressed by the pressure eigenfunction:

T’ﬁl
plal = B)*
Substituting Eq.(36) into (31) to eliminate the temperature eigenfunction,

we obtain the eigenfunction equation for the density as expressed by the
pressure eigenfunction:

T=- (36)

= i (37)

alU — BT

Finally, we substitute Eq.(37) into (35) to eliminate the density eigenfunc-
tion. The pressure eigenfunction equation is derived as

- 2aU’ T . -
P — ( — —) P —a’p=0. (38)

The boundary conditions for the pressure eigenfunction are obtained by con-
sidering the asymptotic form of the solutions of the pressure eigenfunction
equation, Eq.(38). As y — 400, the derivatives of the z velocity component
and temperature, U’ and T, become negligible and Eq.(38) is simplified to:

P —a’p=0. (39)

11



Then, it’s solution is
p= Cre® + Che ™ = Cle(ar+iai)y + C2ef(ar+iai)y’ (40)

where C); and Cy are arbitrary complex constants and without loss of gen-
erality, a, > 0. The pressure eigenfunction at y — +oco suggests that the
boundary conditions for the pressure eigenfunction behave like

Y — 400 : p= Che (rtiay (41)
y — —00: p= Chel@tiay (42)

because the solution of the pressure eigenfunction is bounded when y — +o0.

3.2 & Eigenfunction Equation and Boundary Conditions

It is not trivial to solve for the pressure eigenfunctions from Eq.(38), as its
real and imaginary parts are second-order differential equations with zero
boundary conditions for both pressure, Egs.(41) and (42), and its derivatives
at y — +oo. This problem can be overcome by reducing the order of Eq.(38),
by transforming the pressure eigenfunction into another eigenfunction ® us-
ing a function similar to the Riccati transformation as (e.g. Michalke [20]

)

ly) = Celo 2, (43)

where C is an arbitrary complex constant. This transformation implies that
p(y = 0) = C, an unknown complex constant, meaning that the solution is
not unique. Thus, from the transformation, Eq.(43), we have

F = Celo @i — 5o, 5" = (50) = (&' + &?)p. (44)

Substituting Eq.(44) into the pressure eigenfunction equation, Eq.(38), and
deleting the common factor p, we obtain the ® eigenfunction equation:

b a2 [ 220 T
'+ (aU_ﬁ -

><I>—a2=0. (45)

Since both the ® eigenfunction and streamwise wave number « are complex
whereas the temporal frequency [ is real for spatially developing flows, we
can split ® into the real and imaginary parts, respectively:

(I)ZCD,,--F’L@Z, oz=oz,~+iozi. (46)
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To obtain the governing equations for ®,, and ®;, we substitute Eq.(46)
into Eq.(45) and split the eigenfunction equation into the real and imaginary
parts.

Real part:
P+ P2 - B? + AD, — BO; — o’ + 02 =0, (47)

Imaginary part:

where

Aly) = T 2U'[on(anU = B) + ofU]
T (U —B)2 + (esU)?
2U" ;B
(U — B)? + (auU)?’
and U(y) and T'(y) represent the dimensionless mean streamwise velocity and
temperature, respectively.

(49)

B(y) = (50)

The boundary conditions for the ®, and ®; eigenfunctions can be derived
from the boundary conditions for the pressure eigenfunctions, Egs.(41) and
(42), and the transformation, Eq.(43). From Eq.(44), we have p' = p®, that

1s,
P/p=0®=0, +id;. (51)

Now, from the boundary conditions for the pressure eigenfunctions, Eqgs.(41)
and (42), we have

y = +oo: = —(ay + i) Cae™ W = — (0, +icy;)P,

y— —00: ﬁl — (ar + iai)Cle(a’“ai)y — (ar + iai)ﬁ’

which imply that
Yy — +00: ﬁl/ﬁ = _(051' + iO&i), (52)

y— —00: p/p=a +iq;. (53)

13



From Egs.(51), (52), and (53), the boundary conditions for the &, and ®;
eigenfunctions are obtained as

y—+o0o: &, = —q,, & = —q, (54)

y - —o00: @, =a,, ®;=aq. (55)

3.3 Physical Domain to Computational Domain

We can transform the physical domain y : (—o00,+00) to a computational
domain £ : [—1, 1] by using the transformation:

¢ =tanh (s - y), (56)

where s is a stretching constant and

tanhz = coshz  e? e
Thus, we have
_ 1 ite
y_251n1—§’ (57)
g B _
Q- ssec” (sy) = s(1 - £7), (58)
oy doly) _de(§) dE o
S == = "ge X g =51~ €)9 (59)

where ¢ is defined by ¢ = % and ¢ is any generic quantity, for example,
®,.,P,,U,T,etc.

By substituting Eqgs.(57) and (59) into the equations for ®,, and ®;, i.e.,
Eqgs.(47), (48), (49), and (50), the corresponding equations for &, (&) and

®;(¢) in the computational domain £ : [—1,1] are obtained:
F(§) =0, (60)
G(¢) =0, (61)
where

F(€) = s(1-€)2(6) +27(€) — 0} () +A(6) 2(6) — B(§) Di(€) a7 +0f, (62)
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G(€) = s(1—&)D; () +20,(O)Di(€) + A(E) Bi(€) + B(£) P, (€) — 20,0, (63)
A(e) = FA=EITE) 2501 = EYU(E)lon (U (€) = ) + afU ()
T(¢) (v U(€) — B)? + (iU (£))? ’
 25(1- U
BO = 0@ - 52 + (el @)

(64)

(65)

From the boundary conditions for the ®,(y) and ®;(y) eigenfunctions, i.e.,
Egs. (54) and (55), the corresponding boundary conditions for the @, (£) and

®;(&) eigenfunctions on the computational domain £ : [—1, 1] are obtained:
g: 1: (I),« = —Q,, (Pz = —Qy, (66)
E=-1: &, =0, &; =, (67)

where a,. > 0.

4 Conditions of z Velocity Component U and
Temperature 7' for Anti-symmetric Solutions
of &, and ¢, Eigenfunctions

The behaviors of @, and ®; eigenfunctions are of great interest. If we assume
that the solutions of ®, and ®; eigenfunctions are anti-symmetric, we can de-
rive the necessary conditions for the distribution of the x velocity component
U and temperature 7. Assuming that both &, and ®; are anti-symmetric,
we have

(I)r(g) = _q)r(_g)a (68)
®;(§) = —Pi(=4), (69)
F(&) = F(=£) =0, (70)
G(€) = G(—€) = 0. (71)
Differentiating Eqs.(66) and (67) with respective to &, we have
b.() = 2 A g g -d-9, @)
b9 = T VD g gy =di-e. (1)
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4.1 Conditions of Coefficients A and B

By considering the solutions of the eigenfunction equations, Eqgs.(70) and
(71), and the properties of the anti-symmetry of the ®, and ®; eigenfunctions,
Eqs.(68), (69), (72), and (73), we can obtain the necessary conditions of
coefficients A and B. Now, Eq.(70) implies that

F(§) = s(1-€)8, (&) +D7(&) — DI (E) + A(6)8,(6) — B(O)Bi(€) — i +af (: 05
74

F(=§) = s(1= (=€) (=€) + ®7(=£) — BF(—¢) + A(=E)®,(—¢)
— B(=§)®i(=€) — a7 + ] =0. (75)
Substituting Eqs.(68), (69), and (72) into (75), we have

F(=¢) = 8(1—52)@(§)+‘I’f(§)—‘I’?(f)—A(—é)q%(§)+B(—§)‘I’i(§)—af+a§ =)0-
76
And then subtracting Eq.(76) from (74), we obtain

[A(E) + A(=9)]12:(§) — [B(&) + B(=£)]®i(£) = 0. (77)

Similarly, Eq.(71) implies that

G(&) = s(1 — £)4(€) + 20, () Bs(€) + A(E)®4(€) + B(§)Pr(€) — 2071 : 03
78
G(=8) = s(1— (=) Pi(=€) + 22, (=€) Di(~&) + A(=E) Ls(—¢)
+ B(—£)®,(—¢) — 20,04, = 0. (79)
Substituting Eqs.(68), (69), and (73) into (79), we have
G(=€) = 5(1-€)8i(€)+28,(£)Bi(€) — A(=E) ®i(€) = B(—6) () —20,04 (= 0)-
80
And then subtracting Eq.(80) from (78), we obtain

[A(§) + A(=)]12:(¢) + [B(§) + B(=£)]12:(£) = 0. (81)

Because ®,(£) # 0 and ®;(£) # 0, Egs.(77) and (81) suggest that the condi-
tions of coefficients A and B for the anti-symmetric solutions of ®, and ®;
eigenfunction are as following:

A(§) = —A(=9), (82)



B(£) = —B(=¢), (83)

that is, the coefficients A and B are anti-symmetric with respective to &.

4.2 Conditions of z Velocity Component U and Tem-
perature T’

From the conditions of coefficients A and B, Eqgs.(82) and (83), we can derive
the conditions of z velocity component U and temperature T for the anti-
symmetric solutions of &, and ®; eigenfunction. First, from Eq.(64), we
have

s(1 = (=)*)T(=¢)
T(=¢)
~ 25(1 = (=) U(=9 o (U (=€) — B) + o7V (=¢)]
(e U(=¢) = B)? + (iU (=£))? ’

A-g) =

that is,

A(—g) = SO T8 2501 = V(ler(o,U(=) — ) + U(=4)]

T(=¢) (@ U(=¢) — B)* + (auU(=¢))? ”
Substituting Eqgs.(64) and (84) into (82) and considering the independently
given distributions of z velocity component U and temperature 7', we obtain

T _ T(=¢
T T(-¢) (83)
U9l (e U(€) — B) + a?U(€))] _ _U(=9)ar(aeU (=€) — B) + c2U(=¢)]
(0rU(€) = B)? + (sl (£))? (U(=€) = B)? + (uU(=€))*
(86)
Second, from Eq.(65), we have
o 25(1= (=))U (=B
B = 0= = 57 + (@U (=8
that is, .

(U(=¢) = B)* + (a:U(=E))*
17



Substituting Eqgs.(65) and (87) into (83), we obtain

(@UE) =B+ (U(€))*  (wU(=E) = B)* + (wU(=¢))?

Therefore, Eqs.(85), (86), and (88) lead to the necessary conditions of x
velocity component U and temperature 7.

4.3 Condition of z Velocity Component U

By inspecting Eqs.(86) and (88), we find that their denominators should be
equal, that is,

(@ U(&) = B)* + (U (€)* = (U (=€) = B)* + (U (=€))*.
Thus,
(a7 + a7)(U*(€) = U*(=€)) — 20, B(U(€) = U(=€)) =0,
that is,
[(ef + o) (U(E) + U(=€)) — 22, B|(U (&) — U(=€)) = 0.

Therefore, we obtain two solutions for the x velocity component U:

Solution 1:
U(§) =U(-9), (89)

that is, the x velocity component U is symmetric with respective to £. Dif-
ferentiating Eq.(89) with respective to &, we have

o =L - _ygn--vo @

By substituting Eqgs.(89) and (90) into (86) and (88), it is found that these
two equations happen to be satisfied.
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Solution 2:

2a,
U(E) = ~U(-€) + 22 (o1)
that is,
o p o p
0©) - 20 = (U0 - 255). (92
If we define 5
Qi
then from Eq.(92), we have
H(¢) = —H(=¢),
which suggests that H (&) is anti-symmetric with respective to &.
Differentiating Eq.(91) with respective to £, we have
: dUu d(-=U(— . .
vl = UL = U — vy =t o)

dg dg
By substituting Eqgs.(91) and (93) into (86) and (88), it is found that Eq.(86)
is satisfied but Eq.(88) is unsatisfied except for the case :
U(g) =U(-¢) =0, (94)

that is, U() and U(—€) are constants. Combining Eqgs.(92) with (94), we
obtain the required condition of the z velocity component U(&):

a3 .
m + szgn(f)C’, (95)

U(¢) =

where C'is an arbitrary constant such that U(§) > 0.

Actually, Eq.(94) meets the requirements of Eqs.(86) and (88) and we don’t
need the constraint of Eq.(91). Therefore, we obtain the condition of the x
velocity component U(§):
U(g) = C—H 5 > Oa
c., §£<0, (96)
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where C; and C_ are arbitrary constants. This case is the extreme of the
hyperbolic-tangent mean velocity profile when the parameter ¢ is infinity:

U(€) = e+ [ tanh(g¢),

where e, f, and g are constants. For this case, the corresponding equations for
@, (&) and ®;(£) on the computational domain ¢ : [—1, 1] are much simpler.
By substituting Eq.(93) into Egs.(60), (61), (62), (63), (64), and (65), we
obtain:

S(1— ), (€) + 2(E) — B2(€) + ““%3“%(5) —a?+al=0, (97)
26, o =T
5(1 —f )(Dz(g) + 2(I)r(£)(pz(€) + T(g) (Dz(f) 2 rby — 0. (98)

These two equations don’t include the z velocity component U(§) and thus
it doesn’t contribute to the solutions of the equations.

Therefore, the required condition of the x velocity component is that it is
symmetric with respective to & or Eq.(96).

4.4 Condition of Temperature 7T’

The required condition of the temperature can be derived from Eq.(85). We
recall that any function can be decomposed to two parts: even, or symmetric,
and odd, or anti-symmetric, functions. So, we decompose the temperature
as:

T(6) = 5 (7€) +T(~6) + 5(T(©) - T(~6) =T.&) +T,(6),  (99)
where the even part is 7,(§) = 3(7'(€) + T(—£)) and the odd part is T,,(£) =
$(T(&) — T(—€)). Then, we substitute Eq.(99) into Eq.(85) to obtain

Te(ﬁ) + To(g) Te(_g) + To(_g) — Te(’S) - To(’S)

(100)

Te(f) + To(&) Te(_g) + To(_g) Te (&) - To(g)’

where we have used the properties of even and odd functions and their deriva-
tives from Eqs.(72) and (90). Therefore, from Eq.(100), we have

(Te(&) + To(€))(Te(€) = To(€)) = (Te(€) + To(€))(Te(€) — To(€)),
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which can be simplified to _ _
1.7, =T,T,. (101)

The solutions of Eq.(101) can be divided into three cases:

1. T, = 0. Obviously, Eq.(101) is satisfied. This case means that the
temperature is an even function, that is,

T(€) = T(~6). (102)

2. T, = 0. Obviously, Eq.(101) is satisfied. This case means that the
temperature is an odd function. But, we know that the temperature
must be positive; therefore, we reject this solution.

3. T, 20 and T, # 0. Then,

T, dT, d(nT,) d(InT,)

T.
T. T, Tyd¢ d¢ dé (103)
Therefore, d(InT,) = d(InT,), i.e.,
T,=TC, (104)

where C' = constant. But, T, is odd and T, even. Therefore, Eq.(104)
doesn’t have solutions.

In summary, the necessary conditions of anti-symmetric solutions are that
both the temperature 7" and the x velocity component U are symmetric
with respective to £ or Eq.(96). Furthermore, these conditions are sufficient;
therefore, they are the sufficient and necessary conditions for ® to have anti-
symmetric solutions.

4.5 Conditions of z Velocity Component U and Tem-
perature 7' in the Physical Domain

We can transform the anti-symmetric solutions of ®, and ®; and these suf-
ficient and necessary conditions from the computational domain into the
physical domain. Substituting the transformation Eq.(56), £ = tanh (sy),
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which is an odd function of the variable y, into Eqgs.(68), (69), (89), (96),
and (102), we obtain

®, (tanh (sy)) = ®,(§) = -, (=€) = —P,(— tanh (sy)) = —P,(tanh (—(sy)),)
105
®;(tanh (sy)) = ®;(§) = —@;(—¢&) = —P;(— tanh (sy)) = —P;(tanh (—sy)),
(106)

U(tanh (sy)) = U(€) = U(~€) = U(~ tanh (sy)) = U(tanh (=sy)), (107)

U(y) = C—H y>07
= C., y<0, (108)

T(tanh (sy)) = T(§) = T(—¢) = T(~ tanh (sy)) = T(tanh (=sy)), (109)

which suggest that in the physical domain, the solutions of ®, and ®; are also
anti-symmetric and the sufficient and necessary conditions are that both the
temperature and the x velocity component are symmetric with respective to

Y.

5 Numerical Results and Discussions

Using Eqgs.(60) and (61) with the corresponding boundary conditions, Egs.(66)
and (67), we can solve for the ® eigenfunction. Next, using the transforma-
tion equations, Eqs.(57) and (39), and the ® eigenfunction, we can obtain
the pressure eigenfunction. Finally, we use the pressure eigenfunction and
Egs. (34), (32), (37), and (36) to obtain the z and y velocity component,
density, and temperature eigenfunctions, respectively.

5.1 Numerical Methods for Solving &, and ®; Eigen-
functions

Eigenfunction equations, Eqgs.(60) and (61), with the corresponding bound-
ary conditions, Egs.(64) and (65), can be solved numerically by the shooting
method for the initial value problems [34]. Any non-dimensional velocity and
temperature profiles can be specified as input to the stability calculation; in
particular, either analytic functions or the computed laminar profiles can be
used. For example, the analytical expressions that typify flames in shear
layers, such as the hyperbolic tangent function, have been used in Michalke’s
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analysis [20]. For the spatially developing flows, we specify the value of 3
(real) and an initial guessed value of o (complex) and integrate the above
two equations from £ = —1 to 0 and from £ = 1 to 0. The solutions are
matched at £ = 0 by adjusting the value of « leading to different boundary
conditions for ® at £ =1 and £ = —1. The change of ® is determined by the
Newton iteration method. Convergent solutions of ®, and ®; eigenfunctions
are obtained when the change of « is less than 10~7. The shooting method
is reasonably fast and each run only takes a few minutes on a Pentium 500
MHz machine.

The set of equations for instability eigenfunctions, both real and imaginary
parts, can also be solved together with the eigenvalues using an iterative
scheme. The "TWOPNT’ program written by Sandia [32| is used for con-
struction of such a scheme. A set of arbitrary guessed values for eigenvalues
and eigenfunctions are prescribed as the initial values for the TWOPNT pro-
gram. TWOPNT performs Newton iterations and in the event of a failure,
time marching is carried out to provide a better guessed. The procedure
is repeated until a convergent solution is found. Usually, the program con-
verges within only a few minutes on a Linux PC (Pentium II 500 MHz) for
each specified « value. However, due to the uncertainty in the initial profiles
for the eigenfunctions, the iterative scheme may not find a convergent solu-
tion. Both the shooting method and the iterative scheme will be validated
by comparison of results obtained with current codes and those obtained by
Michalke [20] for a temporally developing mixing layer. A hyperbolic tangent
profile is prescribed for the stream-wise velocity with constant temperature.
In a temporal developing mixing layer, the spatial wave perturbation is as-
signed « (real) and the frequency § (complex) is the eigenvalue to be solved.
Both real and imaginary parts of 5 are solved for; however, only the imagi-
nary part is of interest as it determines the growth of perturbation as function
of time.

5.2 Solutions of Pressure Eigenfunction

After obtaining the solutions of ®, and ®; eigenfunctions, we can obtain the
solution of pressure eigenfunction by using the transformations (57) and (39).
From Eq.(58), we have

dg

A =)
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Substituting it into Eq.(39) , we have

Bly) = Cyel=®@4 4 ¢, (110)

where (5 and C are constants. The integration was carried out in the
computational domain from £ = 1 to a certain point corresponding to y. As
the stability equation for the pressure eigenfunction is linear, any C'3 and C}
can satisfy the governing equation. We simply set C'3s =1 and C;=0.

5.3 Validation of Shooting Method and TWOPNT

We have performed calculations to validate both the shooting code and the
iterative scheme using TWOPNT by comparing results obtained for a tem-
porally developing mixing layer investigated by Michalke [20]. Table 1 sum-
marizes the comparison and the current results using both shooting method
and TWOPNT are within 0.3% of those by Michalke [20].

Table 1 Comparison of Most Amplified Frequencies (w = §;/a)

« WrwoPNT Wshooting WMichalke

0.2  0.3479 0.3485 0.3487
0.4  0.2353 0.2350 0.2352
0.5 0.1876 0.1880 0.1875
0.6  0.1442 0.1440 0.1442
0.8  0.0673 0.0671 0.0672

In Figure 1, current results of the imaginary part of frequency, [;, versus
wave number (real) are compared to those obtained by Michalke [20] show-
ing excellent agreement. We further check the code to see if antisymmetric
solutions are obtained with a symmetric velocity profile in a spatially devel-
oping flow. A nonreacting laminar jet with a velocity profile prescribed by
U = exp(—y?/2) is used for this purpose. Figure 2 presents the computed
values of —q; versus frequency showing a peak value located around 0.3. The
corresponding real part is presented in Figure 3 indicating a near linear re-
lation between «, and S. Figure 4 shows the computed results of real and
imaginary parts of eigenfunction ®. The results are clearly anti-symmetric as

24



found theoretically in a previous section. The corresponding real and imag-
inary parts of pressure eigenfunction are plotted in Figure 5 and Figure 6
respectively. It is interesting to note that both are symmetric with respec-
tive to y=0 as the eigenfunction ®(y) is antisymmetric. The magnitude of
pressure eigenfunction can be multiplied or added by any constant as the
stability equation is linear. Of importance is the relative magnitude between
the real and imaginary parts.

5.4 Results of Triple Flames

Detailed procedures and equations used for solving triple flames are described
by Chen and Echekki [33]. Shown in Figure 7 is a typical contour profile of
reaction rate for a triple flame under gravity pointed downward. As seen in
the figure, the triple flame has developed into a unstable mode with large
variation in the transverse direction. The normalized frequency estimated
from the numerical simulation is about 0.083 for a triple with Froude num-
ber of 2. The Froude number, F'r = S? /gW, is based on planar premixed
laminar flame speed, Sp, and the inlet mixing width, W. We have per-
formed linear stability analysis using results from steady triple flames under
various degrees of gravity effect. The planar premixed flame speed, the mix-
ing width, and the free-stream properties, such as temperature and density,
are used for normalization of governing equations.The computed velocity
and temperature profiles are first fitted by analytical functions of the forms
U(y) = a-exp(—b-y*)+c-tanh(d-y) and T(y) = e-exp(—f -y?), where a, b,
¢, d, e, and f are coefficients determined by least square fitting. Next, these
fitted functions are input to the shoot method program for linear stability
analysis. We found that the iterative scheme using TWOPNT often can-
not find the convergent solutions due to poor initial guessed values for the
eigenfunctions. Therefore, the results reported below were obtained using
the shooting method.

The computed results for the negative imaginary part of wave number, —q;,
versus frequency are presented in Figure 8. These results were based on ve-
locity and temperature profiles at 3% mixing widths downstream of the triple
flame tip with two different Froude numbers and zero gravity. The results
show that as gravity effect increases (with Froude decreasing), the frequency
at the most amplified mode moves toward higher value and so is the mag-
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nitude. That is, increasing gravity effect leads to less stable flames; this is
consistent with numerical simulations of triple flames. The location of most
amplified frequency is found around 0.073 (i.e., 0.46/27) for the case of Fr=2
which is very close to the frequency (0.083) seen in the numerical simula-
tions [33]. This good agreement is perhaps coincident as the most amplified
frequency changes with axial location. Figure 9 shows similar results but at
a slightly further downstream location of 5 mixing widths. The magnitude
of —q; are seen to be lower than those at 3% W but the peak location of
—a; remains about the same. Figure 10 shows the computed eigenfunction
®. As both the velocity and temperature are symmetric with respective to
y, the eigenfunction, ®, is antisymmetric with respective to y. The corre-
sponding pressure eigenfunction is plotted in Figure 11 showing symmetric
profiles with respective to y as expected.

6 Summary

A linear stability analysis has been carried out for triple flames using com-
puted velocity and temperature profiles. Detailed linear stability equations
are derived and analyzed for the special case of symmetric profiles. It is found
that the pressure eigenfunction is symmetric under this condition. Two com-
puter programs have been constructed using the shooting method and the
TWOPNT software which is an iterative method. For temporally develop-
ing flows, we found that both methods are accurate for predicting the linear
instability characteristics. However, for spatially developing flows, the itera-
tive scheme using TWOPNT is more difficult to use and sometimes it never
converges due to the poor initial guess of eigenfunctions. The difficulties may
be overcome in the future by using an initial guess obtained from the shoot-
ing method. Applications to triple lames were conducted using the shooting
method. The results show that gravity effect influences the stability of the
triple flames. When gravity is pointed toward the direction in which the
triple flame propagating, increasing gravity effect leads to less stable flames.
More importantly, the frequency of most amplified mode is found to be close
to that observed in numerical results of a unstable triple flame. The present
analysis is found useful in interpreting the computed unstable modes seen in
the numerical simulations.
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Stability Analysis of a Temporally Developing Mixing Layer with Hpyertangent Velocity Profile
01 T T T T T T

TWOPNT ——
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Frequency, beta_i

0 | | | | | | | | |

0 0.1 02 03 04 05 06 0.7 08 09 1
Wave number, alpha

Figure 1: Comparison of most amplified frequency (imaginary part) com-
puted by TWOPNT and shooting method against those obtained by
Michalke [20)].
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Instability of a Spatially Developing Jet with Symmetric Profile
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Figure 2: Results of the negative imaginary part of wave number, —q;, versus
frequency for a nonreacting laminar jet with a symmetric velocity profile

U = eap(—y2/2).
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Instability of a Spatially Developing Jet with Symmetric Velocity Profile
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Figure 3: Results of the real part of wave number, «;,, versus frequency for a
nonreacting laminar jet with a symmetric velocity profile U = exp(—y?/2).
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Stability of Constant Density Jet with Symmetric Profile
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Figure 4: Results of eigenfunction ® versus distance from jet centerline for a
nonreacting laminar jet with a symmetric velocity profile U = exp(—y?/2).
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Stability of Constant Density Jet with Symmetric Profile
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Figure 5: Results of real part of pressure eigenfunction versus distance from
jet centerline for a nonreacting laminar jet with a symmetric velocity profile

U = eaxp(—y2/2).
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Stability of Constant Density Jet with Symmetric Profile
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Figure 6: Results of imaginary part of pressure eigenfunction versus distance
from jet centerline for a nonreacting laminar jet with a symmetric velocity
profile U = exp(—y?/2).

35



Transient Triple Flame with Gravity Pointed Downward

Reaction Rate -------
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Figure 7: Computed contour of reaction rate for a unstable triple flame under
gravity pointed downward showing large variation in transverse direction.
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Triple Flame: Evaluated at 3 1/3 W Downstream
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Figure 8: Computed values of the negative wave number, —cq;, for stable

triple flames under various degree of gravity effect at a downstream location
of 31/3 W.
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Triple Flame: Evaluated at 5 W Downstream
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Figure 9: Computed values of the negative wave number, —cq;, for stable
triple flames under various degree of gravity effect at a downstream location
of 5 W.
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Triple Flame Froude =2
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Figure 10: A typical eigenfunction ® for a stable triple flame with Fr=2 at
a downstream location of 45 W.
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Triple flame 3x-4x Fr=2 240
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Figure 11: A typical pressure eigenfunction for a stable triple flame with
Fr=2 at a downstream location of 45 W.
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